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ABSTRACT 

The purpose of this thesis was to review cost estimating relationships 

that have been developed and used for aircraft airframe costs, to identify 

existing problems, and where appropriate, to suggest alternatives for the 

future application of cost estimating relationships to aircraft airframes. 

Hahalanobis distance was explored as a means of complementing the more 

traditional statistical measures for regression analysis. This study 

supports the conclusion that cost estimating relationships should be 

developed for a specific system to be estimated, and that Mahalanobis 

distance is a potentially effective tool by which the analyst may 

address the important issue of analo~J between the data base and the 

proposed system. 
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I. I NTRODUCTION 

An independent parametric cost estimate is defined in Reference 1 as 

an estimate which predicts cost by means of explanatory variables such as 

performance characteristics, physical characteristics, and characteristics 

relevent to the development process, as derived from experience on 

logically related systems. It is a means to an end. Decisions that 

inevitably have to be made are based in part on what has happened in 

the past, and in part, on what is expected to happen in the future. 

One of several areas within DOD where uncertainty about the future 

hinders the decision-making process is in the acquisition of major 

weapons systems. Th~ need to detemine a "priori," the cost impact of 

such a decision, is important from a budgeting point of view, and with 

the increased fiscal constraints, the cost impact of a decision can be 

as significant as the perfoxmance characteristics of the system desired. 

Typically, the choice among systems is based on trade-offs between 

various performance parameters in attempting to detexmine r~hich system 

will best fulfill the mission requirements. In the past, cost was not 

always a major consideration in defining the requirements. However, 

given the requirements, every effort was made to procure them at the 

best possible cost to the government. 

In an attempt to save more money in the long run, and operate within 

tighter budgets, DOD instruction 5000.1 was issued. It defines specific 

design to cost policies and upgrades cost to a principle design parameter. 

Cost must now be considered during requirements foxmulati on in determin­

ing which system provides the best value in fulfilling mission needs . 
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This situation is recognized at all levels within DOD as evidenced 

by a great number of policy directives concerning the problems with cost 

overruns and the need to improve cost estimating proceedures. In 1971, 

the Deputy Secretary of Defense directed each of the Service Secretaries 

to: 1) L~prove their capability to perform independent parametric cost 

estimates; 2) utilize their capability at all key decision poL~ts in the 

acquisition process, and J) insure that the results of the analysis are 

made available to the Defense System Acquisition Review Council (DSARC) 

at each DOD program milestone. 

In a report to Congress one year later, the General Accounting Office 

(GAO ) reconmended in part that "DOD develop a.~d implement gui dance for 

consistent and effective cost estimating proceedures and practices, 

particularly rrith regard to ••• an effective independent review of 

cost estimates." As a result of this and other impetus, considerable 

effort has been expended in attempting to develop suitable cost estimating 

relationships (CSR). A CER is a mathematical expression that determines 

cost as a functio~ of various system characteristics. Either directly 

or throu~h proxy, these system characteristics determine the value of 

the explanatory or independent variables that comprise the functional 

fom. "The construction and use of CE..qs form the foundation for makin~ 

L~dependent parametric cost estir.tates ... 1 

There are several reasons why CERs have been and will continue to be 

important in the acquisition process. Early i~ the process when many 

alternative designs are contemplated, a CER based on readily available 

perfonnance characteristics (explanatorJ variables) alloHs the decision 

1I,1iller, Bruce N. and Sovereign, Nicheal G., Parametric Cost Esti­
mating with Application to Sonar Technology, p. 2, Naval Postgraduate 
School, NPS 55207J091A, September 1973. 
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maker to evaluate the cost impact of the various designs (or changes 

thereof) and make trade-offs accordingly. To attempt this type of 

analysis with other than a CER would be both cost and time prohibitive . 

As requirements become more defined and other estimates are made 

available a CER can be used to verify their potential accuE~cy. ?or 

exa~ple, after receipt of several contractor proposals for a specific 

weapons system, CERs developed for individual cost elements may Hell 

indicate areas where the contractor may have "padded" his estimate, or 

perhaps misinterpreted the specification requirements. This is espe­

cially true Hhen solicitation specifications are perfomance oriented, 

allovdng the contractor more latitude in design and thus si~ificant 

differences a.rnong the various proposals. After acquisition, and Hell 

into the production phase of a weapons system, the potential use of a 

CER still exists. Major changes in design (either contractor or govern­

ment initiated) may be extensive enough to warrant the use of a C&~ 

as an initial determination of cost, or to verify a more detailed 

engineering estL~ate. 

Recognizing the need for and usefulness of a paranetric cost 

estimating relationship is the easy part. Developing a reliable CSrt 

is difficult at best. There are many problens the analyst must over­

come in achieving this end. Identifying and collecting the data is 

the first and most difficult obstacle. The availability of cost infor­

mation for a number of previously acquired "similar" systems is impor­

tant. Application of C&~s to the aircraft acquisition process has 

r eceived considerable attention, in part because a reasonably large 

number of aircrai't have been procured since 19.50 for VIhich cost infor­

mation is available. 
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Several techniques/methods for determining an appropriate CER have 

been tried and are continually being massaged. This thesis effort is 

an attempt to summarize these methods as they relate to aircraft 

airframe costs, to identify trends and lL~itations, and to address 

the appropriateness of a shift in direction to enhance the future 

usefulness of parametric cost estimating techniques. 
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II. BACKGRCU;iD AND ~NDS TII COST ESTTIJ .. A.TING RELATIONSHIPS ----

The developnent of a cost estimating relationship (CK1) is dependent 

upon the existence of historical information. The ultL~ate quality of 

the CK1 (its ability to accurately predict costs) can be no better than 

the data upon wr~ch the CER was based. 

DOD recognized the need for and the difficulty of data collection in 

the early 1960s. At this time the only infomation available Has that 

provided under government contract, either as a part of the initial 

proposal or, as in the case of cost-type contracts, as part of the 

billing and audit processes. Information could, and still can be, 

obtained directly fro~ the manufacturer if they choose to provide it, 

but as with the case of DOD secured infonnation, it was both sporadic 

and inconsistent. It was inconsistent in the sense that there were no 

standards by Hhich manufacturers Here required to accumulate and report 

costs. 

In an attempt to correct these inadequacies, the Contractor Informa-

tion Report Progra.11 (CIR) was implemented in 1966. It was designed to 

collect specific cost related information on najor contracts for 

aircraft, missiles, and space prograns. It has subsequently been 

enlarGed to include other programs and is noN referred to as the Contrac-

tor Cost Data Reporting System (CCDR). 

In addition, the initiative was taken to standardize proceedures by 

which costs would be accumulated and reported. This Has acconplished 

by the Cost Accounting Standards Board and based on establishing 

consistency o~ accounting practices among gove~~ent contractors. 

Admi ttcdly, the motive of this action was to enhance the DOD contracting 
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persoP..nel's ability to eval uate proposals and bett er detemine alloca.­

bility and allowability of costs, but an obvious additional benef it was 

t o create some consistency in the data base. 

Each major airfrai'le manufacturer has developed their own data base 

and corresponding models. They are used quite extensively by t hese 

manufacturers in their design selection process and in the preparation 

of proposals. Because of the selective nature of the sample from which 

t hey are derived, their use is considered limited, but the tecbniques 

employed to develop them Hill be discussed later. 

On an industrj-wide basis, DOD must be considered the ultL~ate 

repositorJ of the most accurate ~~d current militarJ aircraft airfra~e 

cost L~formation. It would not be possible for any org~~ization outside 

of DOD to replicate this data base, prinaril y because of t he proprietarJ 

basis upon which most of the infonnation H·as received. 

Nainly in support.of Air Force sponsored research efforts, t hrough 

the years the Rand Corporation has org~~zed and updated the DOD data 

base for airfrane costs, identifying t he deficiencies and correcting 

them where possible. For each of the forty-three (43) aircraft in 

t he existing data base, costs are provided for seven (7) different 

categories. The tHo pre-production nonrecurring cost categories 

include flight test costs and development support costs. Cumulative 

t otals for the re~aining five (5) production related categories i nclude 

engineering hours, tooling hours, recurring manufacturing labor hours, 

manufacturing material dollars, and quality control hours. The 

c~~ulative totals that are provided are for production qu~~tities of 

25, 50, 100, and 200 units and are based on a fitted cost versus 

quantity curve which was extrapolated if actual production quanti ties 

l·rere less than 200 units • 
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In using this data (as with any other data base ) the analys t mus t ' 

be familiar with its derivation and aware of its deficiencies. As 

implied earlier, many of the deficiencies that exist are a resul t of 

compiling data submitted by many contractors utilizing different account­

ing practices. The overhead accounts are an example of where this might 

occur. Part of the differences in cost may be attributed to a difference 

in the allocation base. Another example of a possible source of error 

is tooling costs that occur during the production process and should 

be recorded as a nonrecurring cost, but are often included in the 

production oriented recurring costs. The need for recognizing these 

sorts of problems in developing a CER will be explored in more detail 

in section III of this paper in the context of adjusting ravr data. 

Ha~y organizations have developed cost models and several tech­

niques/methodologies have been employed. By reviewing some of these 

methods, the reader should gain an understanding of where the emphasis 

has been placed and what trends have been established. 

The Rand Corporation has used the data base discussed earlier in 

this section. Regardless of mission profile or type, all aircraft in 

the sa~ple were used, with the exception that for each revision of t heir 

present model some older aircraft were deleted a~d the more recent air­

craft added. This was done for several reasons. The cost i~ormation 

for older aircraft was less reliable than for later aircraft, and the 

development and production experience of these earlier aircraft were not 

considered an appropriate indicator of the future. The current Rand 

model, DAFCA III, is based on a sample of twenty-five (25) aircraft, al l 

of which have a first flight date of 1952 or later. 

In selecting the explanato~; variables for their CER, Rand used the 

following guidelines: "1) They must be quantifiable early in the 
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design phase. 2) Certain preconceived relationships to cost must be' 

supported by the CER. 3) They must be statistically significant." 2 The 

first requirement implies that it is useless to have a CER to estimate 

future cost if detailed information is required in order to dete~ine 

~~ appropriate value for the explanato~J variable. The time of first 

flight is an example of a.11 explanatory variable that is hard to quantify 

early in the decision process when actual performance characteristics 

have yet to be definitized. The second requirement is an attempt to 

avoid spurious correlation, and the third requirement insures that the 

explanatory variables are in fact contributing to explai~ing the vari-

ability in the data. 

A log-linear functional form has traditionally been used by Rand 

because of the inplied diminishing marginal returns when coefficients 

are less than 1.0. In this context, coefficient values greater than 1.0 

beca~e grounds for questioning the merit of the particular expl~~atory 

variable. 

Utilizing this functional fonn, a regression analysis Has done in 

each of the seven (7) co~t categories for many combinations of as many 

as tHenty (20) different explanatory variables. The coefficient of 

determination (R2) was used as a first cut to dete~ine the better c&qs. 

The guidelines for explanatory variables having been employed,the causal 

relationships to cost could be supported. The final test i·ms hoH well 

the CER performed in predicting the cost of the more recent aircraft. 

In all cost categories, the "optimal" CER used weight and s peed as the 

2-r .J...jarge, J.P., Campbell, H. G., Cater, D., Parametric :8quations for 
~stimating Aircraft Airframe Costs, p. 4, Rand Corporation Report 
R-1693-PA&E, Hay 1975. 
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explanatory variables. There Here t"iro exceptions to this: manuf'acturlng 

labor and manufacturing materials use an optional third explanator'J 

variable that is related to time. 

Since DAPCA III was published in 1976 (Table One, co~piled from Ref. 2), 

t he Rand Corporation has pursued the use of other expl anatory variabl es 

that were felt Hould be better predictors than just weight and speed. 

One reason for this Has the result of the Hark of Timson and Tiha.."'l.sky 

(
p .J:' .... eJ. • 17) vrhich criticized the size of the prediction interval for the 

DAPC.h. III CSRs. 

In the pursuit of better predictors of cost, two of the most promising 

areas vrere defi...'ling a measure of tecrmological trends and identifying 

reasonably qua.."'l.tifiable progra~ related explanatory variables. Reference 

15 is a detailed report on the most recent work in quantifying techno-

logical advance in aircraft. Usine; explanatqry variables that measure 

aircraft perfoimance (e.g., specific power, range, sustained load factor) 

a relationship was developed using multiple regression that deternines 

time of first flight of a particular aircraft as a function of these 

perfomance characteristics. The obvious next step was to use this 

measure of technological advance to help explain differences in cost. 

This 1-ras attempted and the results are summarized in Ref. 5. It net Hi th 

li::li ted success, in part, due to the correlation betrreen the tir.le of 

first flight a.."'l.d any perfomance oriented explanatory variable that 

was used in the CER • 

The most recent model developed by the Planning Research Corporation 

(Pnc), which Has published in 1967, is quite different from the Rand 

approach. It Has designed to be used after a contractor has been chosen 

and a production schedule has been defined. The data base consists of 
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TABLE ONE 

SELECTED CErts !i'ROH THE RAIT D CORPORATI On EOD:SL (DAPCA III ) 

E 20.0J2 H o.66J6 s 0.9871 200 -(t+1) Q b+1 10 -6 = 

T 522.J9 H 0.6214 s 0.5J2J 200 -(b+1) Q t+1 10 -6 = 

NL.TR = 0.62597 u o.688J s 1.2109 10 -6 
;n 

H~ = 1188.5 H o.8J06 s 0-5464 T -0.4711 200 -(b+1) 10-6 

I·11n 581.55 1' 0.7830 s 0.4297 200 - (b+1) Q b+l 10 -6 = .~ 
.(\. 

HI1,-, 191.85 H 
0.2600 s 0.8126 200 -(b+1) b+l 10 -6 = s Q .... 

FT = 153.25 H 0.7095 s 0.5856 ~T0.7160 DV -1.5570 10 -6 

Hhere: 

E = total engineering hrs (millions) 

T = total tooling hrs (millions) 

H~ = lffi 
nonrecurring manufacturing labor hours (millions) 

HI.n = 

FT = 

recurring manufacturing labor hours (nillions) , Hi th or Hi thou t 
time variable 

recurring manufacturing materials (millions of 1975 dollars) 

fli ght-test costs (millions of 1975 dollars) 

H = airfrane unit weight (lb) 

S = maximum speed at best altitude (kn) 

b = dete=mined fro~ CTh~ulative average slope of anticipated learning 

Q. = airfra.-ne quantity 

QFT = number of flight test aircraft 

DV = dmnny variable (2 = cargo, 1 = all other) 
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twenty-nine (29) aircraft with first flight dates that range from 1945 to 

19)8. Only four (4) cost categories are used, and all information is 

given in dollars except for manufacturing labor. The four cost categories 

are: 1) Nonrecurring tooling and engineering dollars. 2) Recurring 

tooling and engineering dollars. 3) Manufacturing labor hours (includes 

quality control). 4) Hanufacturing material dollars. Two of several 

possible reasons for this choice of categories include: They are 

sufficient to fulfill the intent of the CER; and, more detailed cost 

information is not available for the older aircraft in the sample. 

Details as to the basis for developing the CERs used in the PRC model 

are not completely available. A log-linear functional form is used, and 

the emphasis on the choice of explanatory variables would appear to be 

_ their logical importance relative to cost rather than their statistical 

significance. The CER for manufacturing material uses speed, a time 

factor, unit weight, and delivery rate as explanatory variables with 

speed being the only variable that is significant at the 90% level. As 

expected, with this type of emphasis on the choice of explanatory 

variables, a different CER is developed for each cost category. 

The remaining model to be discussed, developed by J. Watson Noah 

Associates, uses yet another approach. The most extensive data base 

of the three models is used by Noah. It includes thirty-five (35) air­

craft with first flight dates that range from 1947 to 1974. In the 

initial model, the cost information is divided into only two categories 

--recurring and nonrecurring. In the revised model published in 1977 

(Table Two), the categories were redefined as development and production 

costs (to include all tooling costs). Although the initial model used 

an arithmetic functional form, the revised model used the log-linear ' 

form as used by both the Rand and PRC models. 
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TABLE T11IO 

CERs FROH THE J . HATSON NOAH ASSOCIATES HODEL 

ln D = -13.013214 + .606684 ln H + .602425 ln S - .791 948 ln GU 

+ .877138 ln F + 1.755809 ln TI 

lnP = -8.246325 + .395885 ln H + .166260 ln S + .506351 ln F 

where, 

D = design costs in millions of 1975 dollars 

H = airframe unit weight (lb) 

s = maximum speed at best altitude (kn ) 

GH = gross weight (lb) 

F = maximum thrust (lb) 

TI = technology index 

P = cumulative average production cost for quantity 100 i n 

197 5 dollars 

Note: Hultiply Design Costs by: 

1.775393 for bomber aircraft 

2.185003 for major technology advance 

Hultiply Production Costs by: 

.727219 for cargo aircraft 

1.199087 for bomber aircraft 

1.389824 for major technology advance 
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As with the PRC model, information about the choice of explanatory 

variables is unclear. It would appear that the emphasis was again placed 

on logical rather than statistical significance as evidenced by the CER 

for design costs which contains as two of its explanatorJ variables, 

airframe unit weight and gross weight, which are highly correlated. 

Noah's model also differs from the other two in that it contains an 

index of technological advance and a judgmental complexity factor. 

The index of technological advance is basically just a value that is 

assigned according to the sequential ordering of first flight dates of 

all aircraft manufactured, whether used in the sample or not. The 

judgmental complexity factor is based on the ability to single out major 

differences from earlier aircraft as opposed to what would be considered 

a nomal trend in design or program changes. The CERs for both develop­

ment and production costs are sensitive to this complexity factor, 

therefore a proper choice is required to achieve a reasonably accurate 

estimate. 

It is apparent from reviewing these three models that the methods 

used to determine a CER, and the CERs themselves , are as varied as the 

number of attempts to develop them. A closer look at the problems and 

limitations of these CERs and methodologies is required before an attempt 

to improve and/or consolidate proceedures can be made. 
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III. LIMITATIONS OF, AJ.'TD PROBLEMS HITH EXISTING CERs 

There are obvious limitations to any cost estL~ating relationship. 

Even with perfect historical infonnation, regression theory states that 

the width of the prediction interval about an estimate increases as the 

system being considered extends beyond the limits of the data base. The 

multi-dimensional form of the prediction interval equation is given in 

Ref. 16 as: PI ~ C '!: (t
1

_ ';') SE j1 + E' (X'X)-1 E 

where, 

C = point estimate of the cost of the system predicted from the 

regression 

t 1_ ~ = t statistic (constant for a particular CER with o:. specified) 
~ 

SE = standard error of the regression model 

E = vector of proposed system explanatory variable values, the 

first element of which is a one (1) to represent the constant 

term of the regression 

X = matrix, each column of which is the value of explanator] 

variables of a system in the data base. The first column 

is all ones (1's) and represents the constant term. 

Considering for the moment that all other terms are constant, the 

width of the prediction interval varies according toE' (X'X)-1 E. When 

E equals the column means of X, this expression reduces to ~. where n 
n 

is the number of systems in the data base. The expression under the 

radical therefore becomes 1 + ~ 1-1hich can be written as n + 1 • This 
n n 

is consistent with the one dimensional form of the prediction where the 

n + 1 
n 

(E - X)2 n + 1 
(x

1
- fjZ and reduces to n tem under the radical is: + 

when E = X. 
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It is interesting to note that the value of the E vector (proposed 

system characteristics) is not affected by the corresponding values of 

the X matrix (data base system characteristics). Also, the expression 

X'X, if adjusted for column means and sample size would result in a 

covariance matrix for the explanatory variable values of the data base. 

A technique which incorporates these concepts will be discussed in 

Section V. 

The accuracy of the estimate (i.e., the width of the prediction 

interval) can· only get worse if additional errors are introduced as a 

result of inconsistencies in available data. These limitations are 

generally recognized and accepted by the analyst. There are other 

limitations and problems with CERs, the proposed solutions to which 

analysts do not readily agree. These problems invariably arise as a 

result of the shift in emphasis between statistical considerations and 

judgmental factors, and can usually be shown to account for differences 

in the existing models. The implication here is that the non-quanti­

fiable aspects of developing and applying a CER result in the use of 

different techniques which cannot be objectively evaluated. To explore 

some instances which give rise to these differences is necessary to 

acquire a better appreciation of the problems that exist. 

It may be easy to support a causal relationship between an explana­

tory variable and cost, but in the resulting CER the coefficient of 

this variable may be statistically insignificant. Retaining this 

variable in the CER may give a more logically oriented CER, but if the 

variable does not contribute appreciably to explaining historical 

variations in cost, there is no reason to believe that it will be an 

adequate estimate of change in future explanation of variations in cost. 
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(In Section II it was shown that Rand chose to disregard the variable·, 

and PRC and Uoah chose to retain it.) 

A prerequisite for inclusion of an explanatory variable should be 

the perceived existence of a causal relationship to cost so it is 

unlikely that a CER with a statistically significant variable with no 

apparent causal relationship to cost will exist. Hhat can happen, how-

ever, is the existence of a statistically significant variable with 

obvious effects on cost, but extremely difficult to quantify. This is 

the case with Noah's complexity factor. It is hard to detemine if a 

system will be significantly "different" from historical trends, yet a 

correct decision is critical to the accuracy of the estL~ate of cost 

using this CER. These situations create dilemmas for both the a..'"lalyst 

and the user. 

Multicollinearity is another problem. It arises when two or more 

explanatory variables (or combinations thereof) are highly correlated 

with each other. When multicollinearity exists, interpretations of the 

coefficients becomes difficult. The coefficient of the first of two 

correlated variables is a measure of the change in cost for a given 

change in this variable, all other things considered equal, but due to 

the collinearity, the values of the second variable also will change. 

"Because multicollinearity is dependent upon the sample of observations, 

little can be done to resolve it unless more information about the 

process in question is available."3 An understanding and careful choice 

of explanatory variables is necessary to deal with this problem of 

multicollinearity. 

Jpindyck, R. S. and Rubinfeld, D. C., Econometric Hodels and Economic 
Forecasts, p. 68, McGraw-Hill, Inc., 1976. 
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Selection of the systems to be used in the data base requires a trade­

off between sinilarities with the proposed system versus sample size. 

Noah's use of all available aircraft emphasizes sample size, but older 

aircraft may not accurately reflect more recent trends in production 

and manufacturing processes or requirements. A more selective homogeneous 

sample choice may be criticized because typically the size of the sample 

will become statistically small. Part of the reason for this criticism 

is evident from the confidence interval formula previously introduced. 

The t statistic for a fixed~ is a function of the sample size n. For 

small n, the t statistic, and hence the confidence interval, becomes 

larger. However, this effect is small compared to others. 

From a broader perspective, the problems with existing CERs can be 

attributed to the lack of definition of two basic concepts. The first 

is the fact that there is not a universally accepted method of measuring 

how well the data base and the proposed system relate. This relation 

can be thought of as an analogy between the systems in the data base and 

the systems to be estimated. The second concept is the tendency to seek 

or use one "overall best" CER for all applications. 

Concerning the first concept, the coefficient of determination (R2) 

has been used traditionally as an indicator of how well the estimating 

relationship (detennined by the regression) fits the data. It is a 

measure of the proportion of total variance of the independent variable 

from its mean value that is explained by the estimating relationship. 

Because it is a ratio of variances (i.e., the explained variance divided 

by the total variance) it is a relative measure that can be used to 

compare different estimating relationships according to their ability to 

explain the variances of the dependent variable, which for a CER is cos t. 
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There are two weaknesses associated with the use of R2• As With any 

numerical proceedure, it lacks the ability to identify the existence of 

a causal relationship between independent and dependent variables. It 

is realized that this problem only can be addressed by the analyst in 

his selection of explanatory variables. It is presented here only for 

completeness. Of concern in the use of R2 is the fact that its value is 

completely determined by the data base. The nature of the system to be 

estimated has no effect on its value. In essence, it lacks a measure of 

analogy that the analyst should use to determine an appropriate data base 

given the characteristics of the system to be estimated. It is not 

2 presumed that R was ever intended to be used to structure the data base, 

but it has become a statistical "workhorse" in regression analysis and 

it is important to note its limitation. Hahalanobis distance, first 

introduced in 19.30 (Ref. 9), is a measure of analogy that could be used 

to compliment R2 in deriving a CER which might be a better predictor of 

costs. Professor Uallenius has recently reintroduced Nahalanobis 

distance (Ref. 18) in this regard, and has created enough interest to 

attempt to determine its 1-rorth. It is discussed in Section V of this 

thesis. 

The second basic concept contributing to the problem with existing 

CERs is the tendency to use them for applications other than those for 

which they were intended. Each situation for which an analyst chooses 

to use a CER, either as a primary or a back-up estimate, is unique with 

respect to what is required of the CER. The requirements may simply 

dictate that the best CER is the one that will provide an estimate the 

quickest, or these requirements may demand more of the CER. 

When proposed system requirements are only tentative, the analyst's 

only concern is trade-offs among important decision variables, or 
24 



comparisons of alt ernative designs. A CER devel oped on a t ot al cost basis 

with readily quantifiable explanatory variables, such as sys tem perfor­

mance characteristics, would be sufficient. The absol ute accuracy of 

the CER would not be important as long as the relative accuracy is 

consistent and sensitive to the variables being traded-off. In other wor ds, 

if the CER consistently over-estimated, or consistently under-estimated 

costs, it would still be of use to the analyst because it is the differ­

ences in costs that are the primary concern in this situation. 

For evaluation of contractor proposals, a CER for each of the major 

cost accounts would be necessary. Absolute accuracy of the estimate 

would become more important, and explanatory variables that reflected 

such factors as contractor experience or maximum tooling capacity might 

be more appropriate. 

It is apparent from. all this that one model based on a limited number 

of CERs derived from the Saiile data base' with perhaps some optional CERs 

or explanatory variables, probably is not going to be adequate to meet 

the demands of today' s analyst. 

To enhance the future use and benefits of CERs, the analyst must 

consider these two basic concepts before developing new models or improv­

ing upon existing ones. What is required is a set of guidelines by which 

the analyst may develop a CER for his specific purpose as a function of 

the type of cost estimate he desires and the characteristics of the 

airframe in question. Consideration should be given also to Hahalanobis 

distance as a means of determining the data base that is more apt to 

reflect performance characteristics similar to the proposed system. 
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IV. CONSIDERATIONS FOR THE FU'IURE APPLICATION OF AIRCRAFT AIRFRAHE CERs 

A strategy to improve future independent parametric cost estimates 

would be to develop CERs for each specific proposed system for which 

the cost is to be estimated. In this way, optimal use of available 

infonnation can be made by choosing candidates for the data base 

according to their analogy with the proposed system, and selecting among 

explanatory variables according to the nature of the costs and the 

ability to quantify them. To minimize the effort and to increase the 

effectiveness of this task with respect to aircraft airframe costs, it 

is important to draw upon previous experience. The data base and the 

explanatory variables are two aspects with which the analyst must be 

familiar. 

The data base must include both cost and performance characteristics 

infomation. An accurate data base is the most important aspect in 

developing a meaningful CER. As discussed in Chapter I, the Rand 

Corporation has contributed significantly to collecting and "cleaning'' 

the data base for aircraft airframe costs. This cleaning process 

entails many considerations. Despite the emphasis placed on uniform 

data collection by the Contractor Cost Data Reporting program, informa-

tion is still received in varying fonnats. This is especially true when 

the data base spans many years. 

The information collected has to be matched to the particular 

aircraft and the specific stage of production. A learning curve 

technique is used to adjust for differences in cost due to varying 

production quantities. Learning curve slopes can be calculated from 

the data if sufficient information exists, or estimates of previously 
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experienced learning curve slopes can be utilized. Cost for various 

quanti ties can then be estimated. Another aspect of this "matching" 

problem concerns derivative or prototype aircraft. The derivative 

aircraft generally will have gained some cost savings advantages because 

of the many similarities with the earlier production version. If these 

cost differences cannot be quantified, or the proposed system is of a 

derivative nature, it may not be appropriate to use a prototype design 

in the data base. 

Definitional differences must be considered in cleaning the data. 

Cost categories are the obvious area where this occurs, but the defini­

tion of performance characteristics will cause inconsistencies also in 

the information. For example, gross take-off weight is a function of 

the amount of avionics installed, type and amount of armament, and 

fuel load. This results in different values of gross weight depending 

upon the mission requirements for which it is defined. 

Adjustments for time also are required. Tooling, material, support, 

and other cost categories must be measured in dollars which vary through 

the years if for no other reason than inflation. Price indicies are 

used to correct for this problem; however, errors in the indicies 

themselves are introduced so their use should be limited. Ideally, 

those i terns that can be measured in hours should be left in hours to 

avoid having to correct for dollar value variation. 

One final comment concerning cleaning the data is the effect on cost 

of different service imposed requirements for the same aircraft. The 

landing gear on Navy procured aircraft will include additional costs to 

strengthen them for carrier landings. This effect should be isolated 

and removed, or explained by the regression using a dummy variable. 
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This is by no means a conclusive discussion of the problems of data 

adjustments, nor is it intended to be. It is presented so that the 

analyst is aware of the implications in selecting candidates for the 

data base. Also, it should be recognized that this problem of establish­

ing a reliable data base is a continuous one. It never can be resolved to 

complete satisfaction because of the dynamic nature of the environment. 

Given a data base, the choice among explanatory variables is the 

second most important aspect in developing a reliable CER. There are 

many explanatory variables for ifhich it can be argued that there is a 

causal relationship between their value and airframe costs. This results 

in an even larger number of possible combinations of explanatory variables 

that could be used in a regression equation. To consider all possible 

combinations is unnecessary. If two or more explanatory variables have 

similar effects on measuring variability in cost they are said to be 

correlated. Nothing is gained by including an additional explanatory 

variable that is highly correlated with a variable already present in 

the regression equation. If multicollinearity exists, then there is 

the added problem of interpreting coefficient values, as noted earlier. 

To assist in minimizing the amount of correlation, explanatory 

variables may be grouped into functional categories. In determining a 

CER, normally the selection of explanatory variables would be limited to 

no more than one variable per functional category, and often there is even 

strong correlation between functional categories. The number of categories 

to include would depend upon the purpose for which the CER is intended. 

Table Three is a summary of the more commonly used variables listed 

according to seven (7) functional categories. These categories include: 

Size, Military Usefulness, Construction, Range, Program Characteristics, 

and Haneuverabili ty. 
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TABLE THREE 

CATffiORIZED LIST OF EXPLANATORY VARIABLES* 

(Compiled from Refs. 7, 8, & 15) 

Military Usefulness/Combat 

Weight Maximum Sustained Speed Capability 

Uetted Area Maximum Climb Rate 

Wing Area Speed 

Specific Power 

Construction/Design Naximum Specific Energy 

Wing Type 

Structural Efficiency Factor Range 

R t• f Total Weight--Airframe Height Internal Fuel Fraction 
a ~0 0 Airframe ~!eight 

Skin Friction Drag Breguet Range Factor 

Hax Lift Coefficient Payload Fraction 

Design Ultimate Load Factor Total Fuel Fraction 

Carrier Capability 

Maneuverability 

Program Characteristics Maximum Sustained Load Factor 

Contractor Experience Thrust to Weight Ratio 

Tooling Capability Hing Loading 

# of Test Aircraft 

Index of Program Difficulty Other 

New Engine Dummy Variable Objective Technology Index 

Time 

*See Appendix A for definition 
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From a simplistic point of view, size would be expected to affect . 

cost in the sense that the more you have of something, the more it will 

cost. Use of an explanatory variable in this category is appropriate 

for many different CERs, but since it is highly correlated with others, 

it may be oni tted from perfo:rmance oriented applications. r'1ili tar; 

worth, range, and maneuverability could be considered as one functional 

category entitled "performance," but to do so would suppress important 

descriptive information. These performance related categories are 

especially useful early in the acquisition process because they are 

reasonably quantifiable, and the mission needs of a particular aircraft 

are normally addressed in these terms. Construction/Design oriented 

explanatory variables are used to account for differences in such things 

as structural strength, complexity of diffe~n t wing configurations , 

fabrication technology, integration of avionics, and the like. Their 

use would be considered core. appropriate as the -proposed system becomes 

more defined. 

Unfortunately, the size, performance and construction characteristics 

of airframes cannot explain all the variability in costs. }1any costs are 

program related. They include contractor experience, tooling capability, 

availability of labor, number of test aircraft, advancement in the state 

of the art, capacity, and the like. These factors are not as quantifiable 

as other characteristics, and not all can be accounted for in a CER. The 

data base includes a wide assortment of programs. Therefore the CER 

will not be sensitive to small changes. Additionally, there is the 

implicit assumption that every progr~ will have its fair share of 

technical, programming, and funding problems • To the extent that 

program related explanatory variables can be used, their application 
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is limited to the later stages of the acquisition process beginning ' 

with receipt and evaluation of contractor proposals. 
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V. HAHALANOBIS DISTANCE OR A }fEASURE OF ANALCGY 

Given a system whose cost is to be estimated, a data base of similar 

syste~s and a ~ethodology for deriving a CER, there remains two key 

decisions in the development of a "good'' CER: the choice among systems 

to be used in the data base, and the choice among various explanatorJ 

variables. These two decisions normally are treated as being independent. 

The data base is specified first and usually includes all similar 

systems for which cost infonnation is available. This was the case for 

the three (3) aircraft airframe models described in Section II. Some 

attempts have been made to stratify the sample so that the data base 

might reflect the proposed system better. One such stratification was 

according to aircraft type (e.g., fighter aircraft) and is detailed in 

Ref. 4. It was found that the fighter aircraft sample CERs were of 

poorer statistical quality and did not estimate costs for the four (4) 

most recent fighters in the data base as well as the total s&~ple 

derived CERs. 

Another attempt at stratifying the data base was by speed ranges. 

In both cases, the decision concerning stratification was made without 

considering the explanatory variables that would be used. Also, the 

stratification decision r1as not made relative to a specific proposed 

system, but rather to a category of systems in which a proposed system 

might be classified. 

Both the choice of data base systems and the choice of explanatory 

variables are often made without considering the proposed system. This 

approach does not seem reasonable in light of the fact that the purpose 

of the CER is to estimate the cost of this system. It further supports 
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the contention in Section II of this thesis that CERs should be tailored 

to a specific system. Additionally, it is not apparent that these 

decisions should be made independently. If the data base is to be 

determined according to the relationship between values of explanatory 

variables of systems in the data base and the corresponding values of 

explanatory variables of the proposed systen, it stands to reason that a 

choice of different explanatory variables could affect what systems 

would be most appropriate to include in the data base. 

For example, if the proposed systen is the F-4 and speed is to be 

used as an explanatory variable, the choice of historical aircraft is 

limited. All other previously manufactured aircraft have lower speeds, 

and only six (6) have speed capabilities reasonably comparable to the F-4. 

On the other hand, if wing area is considered as an explanatory variable , 

a range of values about the wing area of the F-4 exists, and there are 

ten (10) aircraft with wing area values comparable to the F-4 wing a...~a. 

A measure of this relationship between explanatory variable values 

of the data base and those of the proposed system is part of the calcula­

tion of prediction intervals and takes the form of E' (X'X)-1 E (see 

Section III). Another related approach that has been introduced as a 

means of quantifying this relationship or analogy between the data base 

and the proposed system explanatory variables is Hahalanobis dista.."lce 

(HD). The formula for Nahalanobis Distance is: HD = (x - x)' S-i (x - x), 

where, 
...., 
x = the vector of the proposed syst~~ explanatory variable values 

x = the vector of the data base system explanatory variable nean 

values 

S = the covariance matrix of the data base system explanatory 

variable values. 
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The fo:nnula for the S matrix can be written in several rrays, one of 

which is: s = XX
1 

- nxx' 
1 

, where, 
n -

x = natrix of explanatory variable coefficients 

n = number of systa~s in the data base 

In this fo:nn, the relationship betHeen HD and theE' (XX')-1 E tenn of 

the prediction interval fo:nnula of Section III can be observed. 

Hahalanobis distance is a function of both the choice of explanatory 

variables and the systems in the data base. It is a measure of analogy 

in that the difference betHeen the proposed system and data base system 

explanatory variable mean values are "weighted" by the S matrix. From 

the expression (x- x) it is clear that the closer the proposed system 

values are to the data base mean values, the smaller the Hahalanobis 

distance becomes, and therefore, the greater is the analogy between 

data base and proposed system. 

The effects on HD caused by variation in S is not clear, but must be 

understood if the analyst is to use MD as a means of improving the 

analogy of the data base and the proposed systen. An alternative fonnula 

for the elements of the S matrix is: 

Hhere, 

n = number of e:xplana tory variables 

k = nunber of explanatory variables 

x = n x k matrix, each column of Hhich contains the values of an 

explanatory variable for each system in the data base. 

S will be a k x k symetric matrix whose diagonal elements Hill be the 

variance of the ith explanatory variable ( ~ ; l=l)~··~)t) and Hhose off-

diagonal elements will be the covariance betrreen explanatory variables. 

Assuming for the moment that the covariance between explanatory 

variables would be zero (0), the S matrix would take the following form: 
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It is easy to show from (xx-1 ) = 

would be: 

(all other elements 
would be o) 

I that the inverse of t his matrix 

and therefore, the calculation of MD would reduce to: 

where : k, x, and x are defined as before . 

In this form, which assurn.es no covariance between explanatory variabl es , 

it can be seen that increases in variability (~~) of the .th data base 
J J 

system explanatory variable will reduce MD. The immediate implication 

of this is that it is not optimal simply to choose data base sys tems 

whose explanatory variable values compare closely to the proposed system 

values. The optimal approach is to introduce as much variability as 

possible while maintaining a mean value close to the proposed system 

value. There is an intuitive side to this in the sense that the greater 

the dispersion between two points the more confidence one has in fitting 

a line between them. 

The reasonableness of the assumption that the covariance is zero (0) 

must be considered, The covariance and correlation between two 
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explanatory variables are related by the following expression: 

(' 
xy 

= covariance (x,y) 
~X r:;'y 

where, 

f' = the correlation coefficient 

x and y are tw-o arbi trarJ explanatory variables with variances '. and~ • 
X y 

Obviously there will be no correlation betvreen explanatory variables only 

when the covariance between explanato~J variables is zero (0). 

In developing a CER it has been noted that the correlation between 

explanatory variables should be minimized in order to avoid sporadic 

results implying that the assunption of zero (0) or minim~~ covariance 

is reasonable. However, regardless of the desire to minL~ize correlation, 

it will always exist to some extent, and therefore its effects, along 1dth 

the effects of variability on .Hahalanobis distance should be examined. 

The effect of variability on MD can be demonstrated by considering 

the following matrix which represents hypothetical values of three (J) 

different explanatory variables (columns) and four (4) systems in the 

data base (rows). The assunption of zero ( 0) covariance will no longer 

hold, but if it is kept reasonably constant the effects of variability 

should be observed. 

l-4 J 8] 
A - 6 3 9 

- 7 4 6 
J 6 5 

where: column variances are J.J, 2, and J.J 

column means are 5, 4, and 7 

For a proposed system whose corresponding explanatory variable values 

are 7, 6, and 8: HD = 41.10 

By introducing some more variability into the values of the first 

explanatory variable while holding the mean constant, the A matrix becomes: 

where: column variances are 11.J, 2, and J.J 

column means are 5, 4, and 7 



For the same proposed system, ND = 20.67. The increase in variability 

of just one of the explanatory variables has reduced ND. 

Repeating the process by introducing more variability into the values 

of the second explanatory variable, the A1 matrix becomes: 

l-1 1 8] .... 
9 4 9 
6 10 6 
4 1 5 

where: column variances axe 11.3, 18, and 3.3 

column means are 5, 4, and 7 

For the same proposed system MD = .64. Again, by increasing the variance 

of the explanatory variables the Hahalanobis distance has been reduced. 

By examining the complete covariance matricies (CVA, CVA1 , CVA
2

) of the 

three example matricies (A, A1 , A2) an understanding of the potential 

effects of covariance on MD can be observed. 

r 3·3 
CVA = [~·3 

-1.3 
2 

-2.3 

1 ] [11.3 -.67 
-2.3 CVA1 = - .67 2 
3·3 1.67 -2.3 

1.67] (11.3 7 1.67] 
-2.3 CVA2 = 7 18 -1 
3·3 1.67 -1 3·3 

The covariances remained relatively const~t as more variability was intro­

duced, with the possible exception of the covariance between the first 

and second explanatory variables in CVA2 which increased from -0.67 to 7. 

To illustrate potential effects of covariance on t1D, more variability 

was introduced into the values of the third explanatory variable while 

simultaneously trying to establish more correlation between variables. 

The A2 and CV A2 rna trlcies became: 

[! 
1 

1ll [ 11.3 7 14.67] 
A3 

4 CVA
3 14.67 

18 26 
= = 26 40 10 

1 
For the same proposed system HD = 187.23 

The variance of the third explanatory variable was substantially 
I 

increased from 3. 3 to 4o , but the expected reduction in MD was more than 
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offset by increases in the covariance (1.67 to 14.67 between the first 

and third variables, and -1 to 16 between the second and third variables). 

The off-diagonal ela~ents of ~tA3 are large compared to t he diagonal 

elements which was not the case for GilA, CVA1 , and CVA2 • The obvious 

implication is that increases in covariance increase t he Hahalanobis 

distance. 

Taking this example one step further, the variances of the 

explanatory ·..rariables were fixed, as are the nean values, but the 

covariances Here reduced by changing the order of elements within 

columns. The A
3 

and cvA
3 

matrices becmne: 

1 4 9 

9 1 1 r 11.3 -7 -6 .6?] 
A4 = CVA4 = -7 18 -10 

6 1 15 L-6.67 -10 40 
4 10 3 For the same proposed system ND 2.53 = 

The reduction in covariance had the anticipated effect of reducing HD. 

It is apparent that if the object is to minimize r-I D, then the choice 

among explanatory variables should be such that the covariance i s 

minimized. This effect of covariance on HD tends to support t he noti on 

introduced earlier of nin~izing collinearity in t he choice ~ong data 

base systems and explanatory variables. 

This is by no means a complete examination of the effects of vari -

a bill ty and covariance on HD. For exa.nple, the signs of the covariance 

elements if mixed could have offsetting effects causing large covariance 

to go unnoticed. However, it must be remembered that the overri ding 

considerations when choosing among data base systems and expl~~atory 

variables is an understanding of the system and the causal r elationships 

that e:dst. Nahalanobis distance, as discussed here, i s only a means 
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of assisting the analyst in achieving a more reliable CER by dealing 

with the issue of analogy between the data base and t he proposed system. 
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VI. SUNI1ARY 

There is a recognized need for the use of independent parametric 

cost estimates in the acquisition of major weapons systems. Through 

the years, considerable effort has been expended in deriving reliable 

cost estimating relationships (CERs) to fulfill this need. To date, 

the majority of models developed are applicable to "types" of systems 

rather than to a specific system. In particular, the models developed 

for aircraft airframe costs are applicable to any reasonably similar 

future aircraft airframe which might be proposed. This approach seems 

unreasonable in the sense that the CER will be applied to a specific 

proposed airframe, yet th~ CER is developed when little or nothing is 

lmown about the characteristics of this propo"sed airframe. 

A ~trategy to improve future independent parametric cost estimates 

would be to develop CERs for a specific proposed system. In this way, 

optimal use of available infonnation can be made, and consideration can 

be given to the analogy with the proposed system for various choices of 

data base systens and explanatory variables. 

This approach is feasible only if the analyst draws upon previous 

experience in CER development. Two areas are important in this regard. 

The analyst must have a current data base and must be familiar with any 

adjustments that were made due to inconsistencies in the info~ation and 

inconsistencies tb~t might still remain. Additionally, the choice of 

explanatory variables should be guided by previous experience concerning 

both the causal relationships that have existed with cost and the problems 

with multicollinearity that have occurred, 
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riahalanobis distance (ND) has been introduced as a means to assist the 

analyst in choosing a combination of data base systems and explanatory 

variables that will be more analogous to the proposed system thereby 

resulting in a potentially nore reliable CER. It has been shown, in 

general, that HD can be ninirnized by reducing collineari ty and increasing 

variability among data base performance characteristics while attempting 

to maintain the mean values of these performance characteristics "close" 

to the corresponding values of the proposed system performance character­

istics. 
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APPENDIX A 

DEFDTITIONS OF SELECTED EXPLANATORY VARIABLES 

Breguet Range Factor: The product of cruise speed and lift-to-drag 

ratio divided by the specific fuel consumption. 

Combat Weight: Height of an aircraft with full internal ord.."lance and 

60% of its internal fuel capacity remaining. 

Design Ultimate Load Factor: The maximum load factor the aircraft is 

designed to withstand at the stress design weight without structural 

failure. 

Internal Fuel Fraction: Weight of internal fuel capacity divided by the 

difference between full internal weight and weight of internal fuel 

capacity. 

Maximum Snecific Energy: The maximum sum of kinetic and potential 

energy developed at 1 G lev"el flight divided by combat rreight. 

Haximum Sustained Speed Capability: Haximum speed of an aircraft at 

combat weight. 

Payload Fraction: The difference between gross weight and internal weight 

divided by gross weight. 

Specific Power: The product of maxinum static thrust and maximum 

velocity divided by combat weight. 

Structural Efficiency Factor: The structure weight divided by the product 

of design stress weight and ultL~ate load factor. 

Sustained Load Factor: Haxirnum load factor the aircraft can sustain in 

level flight at combat weight at an altitude of 25,000 feet and a 

I 

!·1ach number of 0 • 8. 
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lfetted Area: Total surface area of the aircraft. 

Hing Loading: Combat weight divided by wing area. 

(compiled from Refs. 7 and 15) 
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